甘蔗镰孢菌(Fusarium sacchari)金属蛋白酶类效应蛋白Fs03538参与调控植物免疫响应

王璐璐, 吴登, 洪天澍, 姚伟, 张木清, 胡琴

植物病理学报 ›› 2025, Vol. 55 ›› Issue (1) : 19-31.

PDF(5014 KB)
PDF(5014 KB)
植物病理学报 ›› 2025, Vol. 55 ›› Issue (1) : 19-31. DOI: 10.13926/j.cnki.apps.000921
细胞生物学、生理学、生物化学、分子生物学

甘蔗镰孢菌(Fusarium sacchari)金属蛋白酶类效应蛋白Fs03538参与调控植物免疫响应

  • 王璐璐1,2#, 吴登1,2#, 洪天澍1,2, 姚伟1,2,3, 张木清1,2,3*, 胡琴1,2,3*
作者信息 +

Metalloproteinase effector Fs03538 of Fusarium sacchari is involved in regulation of plant immunity

  • WANG Lulu1,2#, WU Deng1,2#, HONG Tianshu1,2, YAO Wei1,2,3, ZHANG Muqing1,2,3*, HU Qin1,2,3*
Author information +
文章历史 +

摘要

甘蔗镰孢菌(Fusarium sacchari)是引致甘蔗梢腐病的主要病原真菌之一。为明确F. sacchari中金属蛋白酶(metalloproteinase)类效应蛋白的功能,本研究前期利用F. sacchari基因组数据对其具有分泌性的金属蛋白酶基因进行预测,从中扩增得到一个锌依赖型金属蛋白酶类效应蛋白基因Fs03538,并对其功能进行了初步研究。结果显示:Fs03538含有一个典型的锌依赖型金属蛋白酶结构域(ZnMc super family),蛋白质N端的1-18个氨基酸序列含有特定的分泌信号序列,亚细胞定位显示Fs03538能够定位于植物细胞核中;qRT-PCR分析表明Fs03538在甘蔗镰孢菌侵染甘蔗12 h到达最高峰值,之后表达量持续维持在较高水平;根癌农杆菌(Agrobacterium tumefaciens)介导的烟草瞬时表达系统确定Fs03538可以抑制小鼠促凋亡蛋白BAX引起的烟草细胞坏死,在F. sacchari中敲除Fs03538后发现突变体在生长速度、产孢量与野生型无明显差异,但致病力显著下降。以上结果表明,Fs03538在F. sacchari入侵寄主的过程中高量表达,可能通过进入寄主细胞核中抑制寄主免疫响应,是F. sacchari重要的毒力因子。

Abstract

Fusarium sacchari is one of the major pathogenic fungus that cause sugarcane pokkah boeng. In order to explore the function of metalloproteinase effector proteins in F. sacchari, we used the genomic data of F. sacchari to predict the secretory metalloproteinase proteins, and successfully amplified a zinc-type metalloproteinase effector protein gene Fs03538. The results showed that Fs03538 contained a typical ZnMc super family domain, and the 1-18 amino acid sequences at the N-terminal of the protein contain specific signal sequences. Subcellular localization showed that Fs03538 could be localized in the nucleus of Nicotiana benthamiana; qRT-PCR analysis showed that the expression level of Fs03538 was induced and reached the highest peak at 12 h post F. sacchari infection. Agrobacterium tumefaciens mediated transient expression system confirmed that Fs03538 could inhibit the necrosis of tobacco cells induced by mouse Bcl-2-associated X protein (BAX). As compared with the wild type F. sacchari strain CNO-1, the Fs03538 knock-out mutant showed no significant difference on mycelial growth and conidia production, but the pathogenicity on sugarcane was significantly decreased. Taken together, the results of the study suggest that Fs03538 is an important virulence factor of F. sacchari, which highly expressed at the time of infection and could inhibit the host immune responses by entering the host cell nucleus.

关键词

甘蔗镰孢菌 / 甘蔗梢腐病 / 金属蛋白酶 / 效应蛋白 / 免疫调控

Key words

Fusarium sacchari / suagrcane pokkah boeng / metalloproteinase / effecor / immune regulation

引用本文

导出引用
王璐璐, 吴登, 洪天澍, 姚伟, 张木清, 胡琴. 甘蔗镰孢菌(Fusarium sacchari)金属蛋白酶类效应蛋白Fs03538参与调控植物免疫响应[J]. 植物病理学报, 2025, 55(1): 19-31 https://doi.org/10.13926/j.cnki.apps.000921
WANG Lulu, WU Deng, HONG Tianshu, YAO Wei, ZHANG Muqing, HU Qin. Metalloproteinase effector Fs03538 of Fusarium sacchari is involved in regulation of plant immunity[J]. Acta Phytopathologica Sinica, 2025, 55(1): 19-31 https://doi.org/10.13926/j.cnki.apps.000921
中图分类号: S432.44   

参考文献

[1] SHAN H L, WANG X Y, YANG K, et al. Natural resistance of new and main cultivated sugarcane varieties to pokkah boeng (in Chinese) [J]. Plant Protection(植物保护), 2021, 48(4): 766-773.
[2] BAO Y X, SUN H J, LI Y F, et al. First report of Fusarium oxysporum isolate gx3 causing sugarcane pokkah boeng in Guangxi of China [J]. Plant Disease, 2016, 100(8): 1785.
[3] BAO Y X, HUANG Z, LI T M, et al. First report of Fusarium andiyazi causing pokkah boeng disease of sugarcane in China [J]. Plant Disease, 2019, 104(1): 286.
[4] BAO Y X, XU Y Z, WANG S, et al. First report of Fusarium sacchari that causes sugarcane wilt disease in China [J]. Plant Disease, 2020, 104(8): 2289.
[5] SHAN H L, LI W F, ZHANG R Y, et al. Analysis on epidemic reason of sugarcane pokahh boeng and its losses on yield and sucrose content (in Chinese) [J]. Sugar Crops of China(中国糖料), 2018, 40(3): 40-42+45.
[6] LUO T, DUAN W X, HUANG Y Z, et al. Occurrence of sugarcane pokkah boeng in sugarcane planting areas in cities of Liuzhou and Laibin, Guangxi in 2016 and variety resistance analysis (in Chinese) [J]. Southern Agriculture(南方农业报), 2017, 48(2): 292-296.
[7] ZHANG Y J. Molecular detection and resistance evaluation for pokkah boeng disease of sugarcane (in Chinese) [D]. Fuzhou:Fujian A&F University(福州:福建农林大学), 2009.
[8] SIDDIQUE S. Pathogenicity and aethiology of Fusarium species associated with pokkah boeng disease on sugarcane [M]. Universiti Sains Malaysia, 2007, 1-40.
[9] LI H X, HUANG Z, ZHOU Y M, et al. Identification and functional analysis of carbohydrate binding module effector gene Fs11724 of Fusarium sacchari (in Chinese) [J]. Journal of Tropical Crops(热带作物学报), 2022, 43(1): 034-042.
[10] LIANG G L, XIE Z L. Advances in microbial-derived metalloproteinases (in Chinese) [J]. Chinese Qinghai Journal of Animal and Veterinary Sciences(青海畜牧兽医杂志), 2017, 47(3): 45-48.
[11] JING G, FENG J, KONG J, et al. Research progress on metalloproteinases from microorganisms (in Chinese) [J]. China Biotechnology(生物工程进展), 2002(1): 61-63+56.
[12] MOSIG R A, DOWLING O, DIFEO A, et al. Loss of MMP-2 disrupts skeletal and craniofacial development and results in decreased bone mineralization, joint erosion and defects in osteoblast and osteoclast growth [J]. Human Molecular Genetics, 2007, 16(9): 1113-1123.
[13] Varshvasky A. The N-end rule: Functions, mystedes, uses [J]. Proceedings of The National Academy of Sciences of The Unitd States of Ameirca, 1996, 93(22): 12142.
[14] HUANG A T, LU M T, LING E J, et al. A M35 family metalloprotease is required for fungal virulence against insects by inactivating host prophenoloxidases and beyond [J]. Virulence, 2020, 11(1): 222-237.
[15] SHAGINIAN K A, LZOTOVA L S, LU V L, et al. Metalloproteinase from Bacillus subtilis: - "intracellular" and extracellular enzymes [J]. Biokhimiia (Moscow, Russia), 1980, 45(11): 2083-2095.
[16] JIA Y, MCADAMS S A, BRYAN G T, et al. Direct interaction of resistance gene and avirulence gene products confers rice blast resistance [J]. The EMBO Journal, 2000, 19(15): 4004-4014.
[17] JASHNI M K, DOLSI H M, LIDA Y, et al. Synergistic action of a metalloprotease and a serine protease from Fusarium oxysporum f. sp. lycopersici cleaves chitin-binding tomato chitinases, reduces their antifungal activity, and enhances fungal virulence [J]. Molecular Plant-microbe Interactions: MPMI, 2015, 28(9): 996-1008.
[18] SANZ-MARTÍN J M, PACHECO-ARJONA J R, BELLO-RICO V, et al. A highly conserved metalloprotease effector enhances virulence in the maize anthracnose fungus Colletotrichum graminicola [J]. Molecular Plant Pathology, 2016, 17(7): 1048-1062.
[19] PAN L J, LU L, LIU Y P, et al. The M43 domain-containing metalloprotease RcMEP1 in Rhizoctonia cerealis is a pathogenicity factor during the fungus infection to wheat [J]. Journal of Integrative Agriculture, 2020, 19(8): 2044-2055.
[20] LINK T I, VOEGELER T. Secreted proteins of Uromyces fabae: similarities and stage specificity [J]. Molecular Plant Pathology, 2010, 9(1): 59-66.
[21] JACOBS K A, C0LLINS-RACIE L A, COLBERT M, M, et al. A genetic selection for isolating cDNA encoding secreted proteins [J]. Gene, 1997, 198(1/2): 289-296.
[22] HUANG Z, LI H X, ZHOU Y M, et al. Identification and functional analysis of Nep1-like proteins of Fusarium sacchari, the pathogen of sugarcane pokkah boeng disease (in Chinese) [J]. Acta Phytopathologica Sinica(植物病理学报), 2022, 52(2): 156-164.
[23] MARDANOVA E S, KOTLYAROV R Y, RAVIN N V. Rapid transient expression of receptor-binding domain of SARS-CoV-2 and the conserved M2e peptide of influenza a virus linked to flagellin in Nicotiana benthamiana plants using self-replicating viral vector [J]. Plants, 2022, 11(24): 3425-3426.
[24] KAWAI-YAMADA M, JIN L, YOSHINAGA K, et al. Mammalian bax-induced plant cell death can be down-regulated by overexpression of Arabidopsis Bax Inhibitor-1 (AtBI-1) [J]. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(21): 12295-12300.
[25] WANG Z P, SUN H J, GUO Q, et al. Artificial inoculation method of pokkah boeng disease of sugarcane and screening of resistant germ-plasm resources in subtropical China [J]. Sugar Technology, 2017, 19(3): 283-292.
[26] LIN Z Y, WANG J H, BAO Y X, et al. Deciphering the transcriptomic response of Fusarium verticillioides in relation to nitrogen availability and the development of sugarcane pokkah boeng disease [J]. Scientific Reports, 2016, 6(1): 139-165.
[27] LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method [J]. Methods, 2001, 25(4): 402-408.
[28] JIANG M, TAN M Q, WANG D, et al. Function analyses of pectate lyase family 1 gene VdPL1-4 in the pathogenicity of Verticillium dahliae (in Chinese) [J]. Plant Protection(植物保护), 2023, 49(3): 19-31.
[29] ZANG R, HUANG L L, KANG Z S, et al. Biological characteristics and pathogenicity of different isolates of Cytospora spp. isolated from apple trees in Shanxi province ( in Chinese) [J]. Acta Phytopathologica Sinica(植物病理学报), 2007, 37(4): 343-351.
[30] ZHANG X Y. Study on the response of Paeonia ostii to drought stress and the function of CCoAOMT gne (in Chinese) [D]. Yangzhou: Yangzhou University(扬州:扬州大学), 2020.
[31] BAEK D, NAM J, KOO Y D, et al. Bax-induced cell death of Arabidopsis is meditated through reactive oxygen-dependent and-independent processes [J]. Plant Molecular Biology, 2004, 56(1): 15-27.
[32] WANG Y, XU Y P, SUN Y J, et al. Leucine-rich repeat receptor-like gene screen reveals that Nicotiana RXEG1 regulates glycoside hydrolase 12 MAMP detection [J]. Nature Communications, 2018, 9(1): 594-606.
[33] XU M, XU J, LIU H Q. Strategies of plant pathogenic fungi to inhibit chitin-triggered plant immune responses(in Chinese) [J]. Acta Phytopathologica Sinica(植物病理学报), 2024, 54(1): 15-25.
[34] YANG Y, GAO Z Y. Research progress on the mechanism of plant disease resistance (in Chinese) [J]. The Guide of Science & Education(科教导刊), 2016, 9(26): 138-139+186.
[35] JONES J D, DANGL J L. The plant immune system [J]. Nature, 2006, 444(7117): 323-329.
[36] HUANG L, ZHANG X, WANG G H, et al. Functional characterization of protein kinase FgSid1 in Fusarium graminearum (in Chinese)[J]. Acta Phytopathologica Sinica(植物病理学报), 2021, 51(5), 710-720.
[37] WANG Y. Mechanistic insight into the action of Vibrio extracellular metalloproteases collagen (in Chinese) [D]. Jinan: Shandong University(济南:山东大学), 2021.
[38] KENICHI I, TATSUO A, HIROSHI H, et al. Serratia marcescens suppresses host cellular immunity via the production of an adhesion-inhibitory factor against immunosurveillance cells [J]. The Journal of Biological Chemistry, 2014, 289(9): 5876-5888.
[39] LV J Y, ZHOU J L, CHANG B Y, et al. Two metalloproteases VdM35-1 and VdASPF2 from Verticillium dahliae are required for fungal pathogenicity, stress adaptation, and activating immune response of host [J]. Microbiology Spectrum, 2022, 10(6): e02477-22.
[40] JIA Y, MCADAMS S A, BRYAN G T, et al. Direct interaction of resistance gene and avirulence gene products confers rice blast resistance [J]. The EMBO Journal, 2000, 19(15): 4004-4014.
[41] HAN J L, WANG X, WANG F P, et al. The fungal effector Avr-Pita ssuppresses innate immunity by increasing COX activity in rice mitochondria [J]. Rice, 2021, 14(1): 12.
[42] JIA Y L, ZHOU E X, LEE S, et al. Coevolutionary dynamics of rice blast resistance gene Pi-ta and Magnaporthe oryzae avirulence gene AVR-Pita 1 [J]. Phytopathology, 2016, 106(7): 676-683.

基金

国家自然科学基金(32260517),广西科技重大专项(桂科AA22117001),广西大学甘蔗专项资金(2022GZB008),广西大学甘蔗与制糖产业学院专项科研项目(ASSI-2022004)
PDF(5014 KB)

122

Accesses

0

Citation

Detail

段落导航
相关文章

/